Estimating Pi in JavaScript

Pi is an irrational number starting off 3.14159 and then carrying on for an infinite number of digits with no pattern which anybody has ever discovered. Therefore it cannot be calculated as such, just estimated to (in principle) any number of digits, and in this post I will implement a few of the many methods for doing so in JavaScript.

Continue reading

Finding Prime Numbers with the Sieve of Eratosthenes in JavaScript

Prime numbers have been understood at least since the Ancient Greeks, and possibly since the Ancient Egyptians. In modern times their study has intensified greatly due to their usefulness, notably in encryption, and because computers enable them to be calculated to a massively higher level than could be done by hand.

The best know (and according to Wikipedia still the most widely used) method for identifying them is the Sieve of Eratosthenes, which I will implement here in JavaScript.

Continue reading

The Soundex Algorithm in JavaScript

Soundex is one of a number of phonetic algorithms, assigning values to words or names so that they can be compared for similarity of pronounciation. It is probably the best know such algorithm as it is built in to most major RDBMSs, as well as PHP and other languages. Here I will write an implementation in JavaScript.

It doesn't take much thought to realise that the whole area of phonetic algorithms is a minefield, and Soundex itself is rather restricted in its usefulness. In fact, after writing this implementation I came to the conclusion that it is rather mediocre but at least coding it up does give a better understanding of how it works and therefore its usefulness and limitations.

Wikipedia has a surprisingly brief article on the topic Soundex on Wikipedia which you might like to read.

Continue reading

Great Circle Distances in JavaScript

The shortest distance between two locations on the surface of Earth (or any planet) is known as the Great Circle Distance. Except for relatively short distances these cannot be measured on a map due to the distortion and flattening necessary to represent a sphere on a flat plane. However, the calculation of the Great Circle Distance from two coordinates is simple, although I suspect generations of midshipmen might not have agreed. In this post I will write a short JavaScript application to calculate the distance from London to various other cities round the world.

Continue reading

One-Dimensional Cellular Automaton in JavaScript

For this post I will write a simple implementation of a 1-dimensional cellular automaton in JavaScript. The concept of cellular automata has existed since the middle of the 20th century and has grown into a vast field with many practical and theoretical applications.

A cellular automaton consists of any number of "cells" arranged in 1, 2, 3 or more dimensions. Each has a state associated with it (in the simplest case just on or off) and each cell and therefore the entire automaton transitions from one state to the next over time according to a rule or set of rules.

The number of dimensions, the number of possible cell states, and the rules can become arbitrarily large and complex but for this project I will implement the simplest type of one-dimensional cellular automaton, known as an elementary cellular automaton.

Continue reading